Automatic Classification vs Ground Truth

A comparison is made for each array between its classification from
ground truth and its classification from the automatic classifier. A confusion
matrix is constructed which lists the number of ground truth target arrays
which are automatically classified as target arrays and background arrays.

This is also done for the ground truth background arrays. From this matrix
the probability of target detection and the probability of a false alarm can

be calculated,
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3.0 RESULTS OF AUTOMATIC CLASSIFICATION

SAR imagery taken from Gallant Hand and Reforger data was first processed
to obtain a set of change images, each containing military targets. The pro-
cessing was done with CDC computer programs which simulate the Modular Change
Detector (MCD) processing required to create a difference image. Figures 3-1
through 3-9 show the results of this processing. In each case, except Figure
3-1, the reference, mission, warped mission, and difference images are pre-
sented. The target changes are shown as white in Figure 3-1 and black on the

other images.

The next stage of the processing is performed on each difference image
separately. First, a pixel intensity threshold is imposed on the difference
image to create mission change events. Then an event size threshold is imposed
so that only "large" events remain. The intensity and size thresholds are
determined either by the user (supervised thresholding) or automatically
(adaptive thresholding). At this point the change data correspond to the MCD
output,

The resulting change event images are presented in Figures 3-9 through
3-17 (events are white). The caption of each image includes the thresholding
procedure and values used. The target clusters are indicated by white hand-
drawn boundaries. The other events are those changes which have passed the
change criteria at this point in the processing. These can be either valid
but non-interesting changes, or false changes induced by signal noise, scintil-
Fation, etc., The ground truth is not adequate to discriminate these background

categories.

Next, the events in each image are clustered into arrays using either
Iterative Clustering or Minimal Spanning Tree Clustering, which are described
in Section 2,0, The captions of Figures 3-9 through 3-17 indicate the
clustering method used.

The next stage of the processing (Figure 2-5) involves the use of event
ground truth to establish array ground truth. Those arrays composed of more
than 527 target events (labeled frow ground truth) are labeled target arrays
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Figure

3-1.

Gal lant Hand (Gun

fmp lacements) Difference Image.
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Figure 3-2,

MISSION

DIFFERENCE

Reforger Region A (Helicopters).
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Figure 3-3.
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Reforger Region B (Hawk Site).
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REFERENCE MISSION

WARPED MISSION DIFFERENCE

Figure 3-5, Reforger Region D (Hawk Site).
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Reforger Region F (Helicopters).
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Reforger Region G (Armor).

3-8




REFERENCE

WARPED MISSION

Figure

3-8.

MISSION

DIFFERENCE

Reforger Region N (Tanks).
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When a solution is reached in which all clusters are of satisfactory
size, and the number of clusters in the solution is reached through an
orderly process, a stability test is performed. In this situation iterations
are performed which permit events to move freely from one cluster to another;
no new clusters are created and no old ones are destroyed. This is accom-
plished by assigning each event to the maximum likelihood cluster and by
refusing to destroy a cluster by reassigning the cluster nucleus (The event
nearest the cluster centroid; these are determined for each cluster before
the stability test begins). Iterations continue until no reassignments are
needed or until it is apparent that the reassignments are due to oscillation
of two or more events between two or more clusters. In either event the

system is then judged to be in a relaxed state.
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APPENDIX B

F'EATURES FOR DESCRIBING ARRAYS

After the clusters have been isolated, that is, individual events have
been grouped in an array, characteristics about these arrays can be used to
identify targets. The most obvious characteristics or features are size
and intensity of individual events and combinations of size and intensity
'f events in an array. A proposed set of features is described which will
be used in the multi-variate group=-separating procedures. The features

describe the geometric properties of a group of change events in an array.

Subroutines to perform the computations necessary to transform binary
data describing an array of change events into the set of twenty features are

on hand. The following measurements are accumulated for each array.

=z
i

= Number of pixels in event j

]

Centroid of event j

(@
]

' Covariance of event j about the event centroid

N = Number of events in the array

-3

R = Geometric centroid of the array

C = Geometric covariance of the array
-

Rm = Mass centroid of the array

Cm = Mass covariance of the array

The quantitative definitions of these measurements are given below.

—

rij = image coordinate vector to pixel i of event j

¢)

bJ = get of all pixels in event j

B-1
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R, = matrix of pixel vectors in event j

b
=;..‘; ; "';: .oo; ‘;)
Hans e X T et g
1
G = T
N. R.R
e W
R == r
N jj
R = matrix of event centroids about the array centroid
- (rl‘R, rZ-R, evey rN-R)
. | T
C—NRR

= Zj b B
N

RM = matrix of event centroids about the mass centroid

- -

G R By - R e By - By

CM=% RMRMT

Define three diagonalizing transformations as follows:

B-2
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1] .
= ujcjujq
0 AZj
Hy = (Hlj,sz)
hyy
H,, =
ij .
i2 /3
A 0
X =ucu’
0 A,
U= (U, U,)
AL
Ui il
Uiz
T 0 z
=MC, M
3 r M
2
M= (M), M)
e )
M, = ¥
12

The eigenvalues of the three covariance matrices are found on the diagonals
of the left hand side and the eigen vectors which define the three principal

directions are:

e B o

.
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and M

Define the distance from event i to its nearest neighbor as

Ei = M§n|(;i - ;H)I

A set of twenty features which characterize the array is computed from
these measurements. The description is based on the size, shape, arrangement,
orientation and uniformity of events in the array. It is also based on the
array size and shape and on the mass size, shape and displacement. The

following features are used.
l. Array Size

Feature 1 = log10 N
2, Spacing of Events

This is the only feature which requires a search of the data.

N

o |8

i=1

Define d =

Zl—

A
Feature 2 = laglo @

3. Regularity of Spacing

N
Feature 3 = ':j 2: (d

i=1

=2
i

B-4
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4., Event size
N
Define le —l' Z

N 5 Ali
i=1
Feature 4 = loglo (Vv Xl)

5. Uniformity of Event Size

L
<—§ . Ay - AD

L/4

Feature 5

6. Event Shape

t =

Feature 6

A

)
Zj:é; where ilj = YZJ.

1j

7. Uniformity of Event Shape

1
Feature 7 = | % 2(17 - I)z
j j

8. VUniformity of Event Orientation

Feature 8 = \/'[% 2 {1- (ﬁl . 13)2}
3 3

where z (h“, h12)j
J

b 2 2
Z(h11+h12)j
h|

B=-5




10.

150

12,

13.

and
H .= (h,, h )
Hyg = (hyps Byp)y
is a unit vector in the principal direction of event j.
Array Size
Ay
Feature 9 = log —_
10 -
\ Xl

where Al is the first eigenvalue of the array using the array centroid.

Array Shape

Feature 10 = AZ/Al

Orientation of Events to Array

Feature 11 = t/;];' Z{l - (U1-H1 )2}
v 3 j

Event Area

N
Define W = & 2 N
e ne N

=t )

Feature 12 = log,, ™

Uniformity of Event Area

Feature 13 =

N
12: [1og}o(N,) - log () ]

Z |
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14.

15.

16.

17.

18’

19.

Array Mass Size

A
Feature 14 = log, JI}/loglo W—l
Xl

where I1 is the first eigenvalue.
Array Mass Shape

Feature 15 = Ié,rl

Orientation of Array Mass to Array

Feature 16 = 1 - dql . ﬁl)Z

Distance from Mass to Geometric Centroids

Feature 17 L 10g10(l E o %l

2.,

Feature 18 = - 1og10 bl

Array Pixel Density

a+/Tha+ [T

Event Pixel Density

N.
befine P, = J
(1 + \/A“)(l-*- JA:)
h J
N
.1 2
Feature 19 = P = N Pj
J=1

PS— SRS ——

s Via $Aluky 8Ads
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Uniformity of Event Pixel Density

T N

j=1

I'eature 20
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APPENDTIX C

C

LASS-SEPARATING TRANSFORMATTION

The following discussion develops the '"optimum' linear transformation W
of the array vectors in feature space which both clusters arrays of the same
class and separates arrays that belong to different classes. The measure of
clustering or separation between two arrays is the Euclidean distance between

the arrays after their linear transformation to the new feature space.

The effect of such a transformation is illustrated in Figure C-1, where
like arrays of each class have been clustered and the two clusters have been

separated from each other.

W

P e R

¢ ®

Figure C-1. Separation of Classes after the Linear
Transformation W to New Feature Space.

One transformation that accomplishes the stated objective can be speci-
fied as follows: Find the linear transformation W that maximizes, after
transformation, the mean-square distance between points that belong to differ-
ent classes (the mean-square interset distance) subject to the constraint that
the mean-square distance between the points of one class (the mean-square

intraset distance of the class) is held constant after transformation.

The particular linear transformation W that maximizes atter trans-
formation the mean-square interset distance while holding the mean-square
intraset distance of one class constant after transformation is developed
below. The purpose of the transformation is to separate arrays of different

classes while clustering those that belong to the same class.

C-1
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The linear transformation W maps the N-dimensional feature vector f into

—
f's
— —
f' =W f (e
w12 et wlN f1
w22 o wZN fz
. (€.2)
N2 ** NN fx
so that (C.3)

b
The mean-square distance between the M, members of the set {f } and
m

the M2 members of the set {3;}, after the 1inear transformation, is given by
Equation C.4, where f and g are, respectively, the sth components of the
mth and pth arrays ofm:he setssf?;} and f;;}. For notational simplicity,
this mean-square interset distance is denoted by S({f;], {E;}) and is the
quantity to be maximized by a suitable choice of the linear transformation
W. The choice of the notation above is intended to signify that the trans-

formation to be found is a function of the two sets.

e O
, 1 = 1 '_—D' g all '-_;'
S({f,)s (8,1 = MM, Z Z (?m 8,') + (&,'-8,") (C.4a)
m=1 p=1
M M N

e 2
= z : 2 : £' _-g' C.4b
MM, 2 (£' 08 pn) ( )

i M1 M2 N N 2
T oMM, Z Z; Z: ans(fms-gps) g
m=1 p= n=1 s=]
Cc-2




The constraint that the mean-square distance § between the points of one

-
set, say {fm},'is a constant is expressed by Equation C.5.

MM
1 Ly . -.|-‘|
g:-(—MT_-ﬁM—l Z 2: (?m - B R (C.5a)
m=1 p=1

N
ik Vg 32
L M, -1M; Z Z i * e 46 50)

=_(M1__1_)M_ Z Z Z Z Wt ) (C.5c)

K, a constant

Both equations C.5 and C.4 can be simplified by expanding the squares

as double sums and interchanging the order of summations. Thus

N N N
s -h
S({fm}, {gp]) = E E E S S (C.6a)
n=1 s=] r=1
where
Ml M2
— —-—_——'1 - -
st = *rs Mle § ; z : (fms 8P3)(fmt ng) s
m=1 p=1
and

N N N
9= z E i wns wnr tsr = K (C.7a)
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where
i M
- — —_——_l - -
Cor = Crs T M,-1)M E : E : (fms fps)<fmr fpr) =0y
1y ot ot

The coefficient B is the general element of the matrix X which is of
the form of a moment matrix and arises from considerations of cross-set
distances. The matrix T with general coefficient tsr arises from consider-

-
ations involving distances between the points of only one set, the set {fm].

Equation C.6 can be maximized, subject to the constraint of Equation C.7
by the method of Lagrange multipliers. Since dwns is arbitrary in Equation

C.8, Equation C.9 must be satisfied.

N N N
PR O e Z Z aw E v o(x_-At ) =0 .8)
n=1 s=1 r=1
N
Z wm(xmr - xt") =0 n=l, 2, ...,N; 8=1, 2, ..., N (C.9)
r=1

Equation C.9 can be written in matrix notation to exhibit the solution

in an illuminating way. Let L be a row vector with N components (wn

g mes
— )
W), then Equation C.9 can be written as

-‘_’.1 (X-AT) = 0

'E; (X-AT) = 0 (C.10a)

—w:q (X-AT) = 0

Multiplying both sides of the equation from the right by T-l, Equation
C.10b, which is of the form of an eigen value problem, is obtained.

C=4
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v

" (XT 1 AI) = 0
Tr‘n xrlan = o (C.10b)
- 1t ) =0

T-1 exists since T is positive definite. Equations C.10a and C.10b can be
satisfied in either of two ways. Either ﬁ; (the row vector which is the

nCh row of the linear transformation W given by Equation C.2) is identically
zero, or it is an eigenvector of the matrix )(T..1 In order to find the
solution that maximizes S, a substitution in the mean-square interset distance
given by Equation C.6a must be made, Note first that through matrix notation,

Equations C.6a and C.7a can be written as Equations C.1l1 and C.12,

N
FLE - W oxw T 11
s(E, (g, = ), W oxw €.11)
n=1
N
—Z"‘T"‘T—x .12
0= wn wn = €.12)
n=1

But from Equation C.10a,'#;x can always be replaced by A#;T . Thus
Equation C.1l1 can be written as Equation C.13, where the constraint of

Equation C.12 is used.

N

- -

SUELED =2 ) worw Tax (c.13)
n=1

Thus the largest eigenvalue of (X-\T) = 0 determines the transformation

that maximizes the mean-square interset distance, subject to the constraint

. B
that the mean-square intraset distance in the set {fm} is a constant. The
transformation is given by Equation C.l14, where'ﬁa 5'(w11, Wips eees wlN)

is the eigenvector corresponding to the largest eigenvalue, )., and the

1!
other d; of Equations C.10a and C.10b are identically zero.

- A .
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W= (C.14)

The transformation of this equation is singular, which expresses the
fact that the projection of a point in feature space onto the line of
maximum mean-square interset distance and constant mean-square intraset
distance for set [f;} is the single most important feature determining class
membership. This is illustrated in Figure C-2, where the line aa' is in the
direction of the eigenvector with the largest eigenvalue of the matrix XT.-1
The point';’represents an array of unknown classification with known values
of Feature 1 and Feature 2. The point's projection onto line aa' is the
single best class-separating feature. The point ??is classified as class
{g } because the mean-square difference between its projection on line aa'
and the projection of points belonging to set {g | S(p,fd;}), is less than
S(p ﬁ? }), the corresponding difference with members of set {f }.

For the twenty feature problems considered in the contract, the three
best class-separating features (or projections) were used. This transfor-
’ : ; : o -
mation is given by Equation C.15, where v, (wll’ w12’ shsies wlN)’
T (w w eeey, W, ), and W, T (w w ..., W, ) are the eigenvectors
2 2L =227 TsZNa 3 31° ~3g’ > 73N
corresponding to the three largest eigenvalues (xl,hz, and xa), and where the

;alof Equations C.10a and C.10b are identically zero.

1 ¥ IN

o Wop  Wop o o . Wou ©.15)
it L - LR
0 0 e 0
0 [ R

Thus, for each array, the three best generalized features Esare calcu-

P
lated from the original twenty features f using Equations C.15 and C.1.
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I'eature 2 Class f

<b
I

Feature 1

Figure C~2, Singular Class-Separating Transformation

In order to determine the transformation W in Equation C.15, the eigen-
vectors W and eigenvalues )\ of XT-l, as indicated in Equation C.10b, musﬂ
be obtained. The elements of the matrices X and T are given by Equations
C.6b and C.7b, respectively. The following equations indicate how these
matrices can be expressed in terms of various moment matrices of the two

(T} and (g
classes | m} an {gpj.

From Equation C.6b,

1 2
1
Ser ® Yo T B SO £ - C.16
sr rs MM, gl §1 (f.s gps) (for gpr) ( )
C-7




Define
M M
— .1 b &
s M. M Z gpa
12
m=1 p=1
1 MZ
e T ™ gps
2 =
p=1

Rewrite the argument of Equation C.16 as

(£ 8pa) -8 (LT Tla B DAL -8 Tle KD

Using Equations C.19 and C.17, Equation C.16 becomes

<
[}

rs ([fs-gs j- [gs-gs])([fr-gr]- [gr-é;])

>
Il

rs Efs—gsj[fr-g}]-[fs-ggjtgr-g;]

The second term of Equation C.21 can be evaluated.

(£-8, 108, -8, )=[£,-8, 1e -E 1= 0

since

The same result is obtained for the third term of Equation C.21.

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(€.22)

(€.23)




Vg

Thus Equation C.21 becomes

(C.24)

+ (g, B, 08 €]

Equation C.24 indicates that Xsr is the sum of the covariance of class f
about the mean of class g and the covariance of class g about the mean of

class g. Using matrix notation, Equation C.24 can be written.

X = F(§) + G(8) (c.25)
where F(g) is the twenty-feature covariance matrix of class f about the
twenty-feature mean, g, of class g, and G(g) is the covariance of class g

about the mean of class g. If, instead of Equation C.19, the following

substitution is made

(fms-gps)(fmr-gpr) =([fms-fs]-l:gps-fsz.“)([fmr-fr]-[gpr-flr']) (C.26)
Then Equation C.25 becomes

X = F(f) + G(f) (c.27)

The matrix T can be evaluated from Equation C.7b.

o L.
- - _—1 - -
Par " fpa " (Ml-l)M1 Emil %r- (fms fps)(fmr fpr) (C.28)

Rewrite the argument of Equation C.28 as

(ims_fps)(fmr-fpr)=([fms-{s]-[fps-fs])([fmr-fr]-[fpr-fr]) (C.29)

C-9
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Using Equations C.29 and C.17, Equation C.28 becomes

M, ([fs-?s‘][fr-f'rj-[fs-?s—][fr-?'_’\

r
t =

e &—lj—lj el oy (C.30)
-[fs- sJ[fr-?;}+[fs-?;][fr_ r]‘)
Using Equation C.23, Equation C.30 becomes
M — —
o 1 2 [£ -f [f -£_ ]
tsr = ?ﬁITT) s s r r (C.31)
M -
? 1 2F (D)
T = ?ﬁITTT (C.32)
Thus, using Equations C.32 and C.27,
Sl e - S
XT "o [F(f) + G(E)] F () (€.33)
= I +¢(H F D (C.34)

F —t

AR S ki

e

Thus the eigenvectors W and eigenvalues) of XT-l

the eigenvectors and eigenvalues of G(E) F-1(§3.

can be obtained from

G(f) is the covariance
matrix in the twenty-feature space of the arrays of class g calculated

about the mean of the arrays of class f. F—l(EB is the inverse of the

covariance matrix of the arrays of class f calculated about the mean of
the arrays of class f.
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Throughout this section the class-separating transformations were developed
by reference to the existence of two sets, {?; } and {E; } . The results
obtained by these methods are more general, however, because they apply
directly to the separation of an arbitrary number of sets. For example, in
the maximization of the mean-square interset distance, there is no reason why
the matrix X should involve interset distances between only two sets. An
arbitrary number of sets may be involved, and the interset distances are
simply all those distances measured between two points not in the same set.
Similar arguments are valid for all the other matrices involved. The only
precaution that must be taken concerns the possible use of additional con-
straints specifying preferential or nonpreferential treatment of classes.

These additional constraints may require, for instance, that the mean square
intraset distance of all sets be equal or be related to each other by constants.
Aside from these minor considerations, the results apply to the separation of

any number of classes.

. e : ;
The eigenvectors of G(f) F “(f) are needed to obtain the transformation
to the three best class-separating generalized features in the twenty=feature

space. The eigenvectors are obtained as follows,

Theorem: If G(f) and F(f) are symmetric, positive definite matrices,

then there exists a transformation W such that
- T
(a) WF(f) w =1, (C.35)
where I is the identity matrix;
- L
(b) WG(E) W =D (C.36)
where D is a diagonal matrix
and

() We® i@ wl=p (€.37)

C-11




] ]
Since Equation C.37 is a similarity transform of the matrix GF ~, D (which

is the same diagonal matrix as in (b)) has diagonal elements which are the

= | o
eigenvalues of GF = and the rows of W are the eigenvectors of GF

lo W is

constructed as follows: Let H be the similarity transform for F.

HF (f) e b,

(C.38)

where D, is the diagonal matrix with diagonal elements equal to the eigenvalues

1
of F. Since F is symmetric

Thus

HF () - D,

Since the eigenvalues of F are positive definite,

HF (F) HID =% -

D =4 )

1

Apply this same operator to G to define E,
L s & i e
D, " HG(E) HY D, i, G(f)

Let M be the similarity transform for G .

Since G is symmetric

Thus
MG (£) Ml o= p

C-12

(C.39)

(C.40)

(C.41)

(C.42)

(C.43)

(C.44)

(C.45)
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where the elements of the diagonal matrix D are the eigenvalues of G . The
matrix W which has the properties given in Equations C.35, C.36, and C.37
is constructed as

W=MD,"%H (C.46)

To show that Equation C.35 is true,

- R i
WF(F) W' = MD, 2 {r (F) H D, % M (C.47)
Using Equations C.41 and C.44
- T
WF(f) W =1 (C.48)

Thus Equation C.35 is true when W is given by Equation C.46.

To show that Equation C.36 is true,

-% T

e X -
WG (f) W' = Mp,”% HG (£) e D,”" M (C.49)

1
Using Equations C.42 and C.43
P .
WG(f) W =D (C.50)

Thus Equation C.36 is true when W is given by Equation C.46.

To show that Equation C.37 is true, multiply Equation C.35 and C.36

together.
T - T
WG(f) W WF(f) W =D (C.51)
From Equation C.35
-1

F(T) wT =y (C.52)

C-13
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T, U W |

F(f) =W (W) ~ = (WW) (C.53)

L) = ww (C.54)

Using Equation C.52 in Equation C.51,

we® W wwl=p (C.55)
Using Equation C.52 in Equation C.53,

we® @ wl =0 (C.56)

Therefore Equation C.37 is true. Since Equation C.56 is a similarity
=i, 5
transform of the matrix GF , the diagonal elements of D are the cigenvalues
of GF-l, and the rows of W are the eigenvectors of GF-l. These eigenvectors

-1
of GF are not orthonormal, since

w s w (C.57)
so that
T

Equation C.57 is obtained from Equation C.46, C.44, and C.39, where D,
is the diagonal matrix with diagonal elements equal to the eigenvalues of F,

as given by Equation C.38.

In summary, W is the transformation matrix which maps a twenty-feature
vector of an array into the generalized feature space, the best three of which
will be used to classify the array. W, constructed as in Equation C.46, has

the properties given by Equations C.35, C.36, and C.37.
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APPENDIX D

PARAMETERIZATION OF PROBABILITY DENSTITTIES

The class-conditional probability densities for the arrays in the two

classes f and g are modeled as multi-variate normal distributions in the ne
dimensional feature space, with n = 20,

For the class f, the probability
density of obtaining the twenty-feature measurement X is

px|e) = ——, [F L@ % exp (5D F LD kD))
(2m)

(D. 1)

-] = . 2
F (f) is the inverse of the twenty-feature covariance matrix of the class f
about the twenty-feature mean, ?; of class f.

IF(E)I is the determinant
of F(%). (X—?) is the twenty-feature measurement relative to the mean of
class f,

For the class g, the probability density of obtaining the twenty-feature
measurement X is

ol =ik ; el e el
P g) = ﬁff 17 @ exp { 3D ¢! @ )
2m

(D.2)

The class~conditional probability densities in the best generalized
feature space are found as follows.

Equation D.2 involves the quadratic
from

-5 1@ x-F) = yT L

(D-3)
where y = (fo) by definition. From Equation C.l the transform W takes a
featurc vector from the twenty-feature space to the generalized feature space.

(D.4)

D-1
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Thus

y = w'ly' (D.5)
v = ahteh? (0.6)
The right side of Equation D.3 becomes
yE @y = oH e HTE @y
= " wr@WH™ ! Feg
Thus in the generalized feature space
FNE = wE® wh (D-8)

in order that the quadratic forms in the generalized and twenty-feature spaces

are equal, Using Equation C.35
1-1 = =
F'"°(E) =1 (D.9)
so that
=1 =
F*" I =1 (D. 10)
Using Equations D.9 and D-8 in Equation D.7
T

yEL(E) y = (g7 Iy' (D.11)

Substituting for y

x-67T FFLE &) = ®'-FHT 1x'-FY)
& B (D. 12)
- (X'-fl) (xl-fl)
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